

Development of a One-pot Reaction for Drop-in Biofuel Production Using Solvent-free Liquid enzymes

Despoina-Sisely Goodman, Mayara Chagas De Avila, Jake H. Nicholson, Susana M. Meza Huaman and Alex P.S. Brogan

Department of Chemistry, Faculty of Natural and Mathematical Sciences, King's College London, Britannia House, 7 Trinity Street, London, SE11DB, UK despoina-sisely.goodman@kcl.ac.uk, alex.brogan@kcl.ac.uk

thebrogangroup.co.uk/posters

- 2. Test effects of modification on enzyme properties and their solubility in organic solvents (e.g. ionic liquids, deep eutectic solvents)
- 3. Couple enzymes to produce an efficient and scalable one pot reaction with potential for further downstream applications.

Biofuels:

- Renewable energy source^[1]
- Most common = Bioethanol and Biodiesel (applications limited)^[2]
- Drop in biofuels:^[3]
 - Structurally similar to fossil fuels
 - Compatible with existing infrastructure
- Can be produced using various methods e.g. **BIOCATALYSIS**^[3]

Secondary Structure of RN Throughout the Modification (BestCell)						
Secondary Structure (%)	WT RN	C-RN	[C-RN] [C10]	[C-RN] [L23]		
a-Helix	27.3	15.7	30.5	25.2		
β-Sheet	20.7	25.2	13.8	19.6		
Turns	12.2	14.1	12.3	13.4		
Unordered	39.7	45.0	43.3	41.9		

Conclusions:

- Successfully modified and characterized the lipase and decarboxylase, retaining biological structure and activity.
- Assessed the effects of the modification on the enzymes structure and activity.
- Assessed the solubility of the substrate in a range of ionic liquids and deep eutectic solvents.

Going Forward/ Future work in the field:

- Perform & optimize coupled reaction for the one-pot conversion of triglycerides to alkenes analyzing the data obtained using GC-MS and comparing against standards.
- Assess recyclability of enzymes and perform a Life Cycle Assessment to confirm the benefits of downstream applications
- Consider the modification and integration into the one pot reaction of the previously stipulated Oxidase – Decarboxylase chimera to avoid issues related to peroxide addition.^[9]

	[emim][OAC]	[emim][EtSO ₄]	[emim][OTf]	[emim][NTf ₂]
lass (mg) of trimyristate per mL of solvent	0.556	0.714	0.833	1.25

References:

- [1] N. S. Mat Aron et al, Sustainability of the four generations of biofuels A review, Int J Energy Res, 2020, 44, 9266–9282.
- [2] J. Keasling et al, Microbial production of advanced biofuels, Nat Rev Microbiol, 2021, 19, 701–715.
- [3] P. Intasian et al, Biocatalysis, and Metabolic Engineering for Enabling a Circular Economy and Sustainability, Chem Rev, 2021, **121**, 10367– 10451.
- [4] A. P. S. Brogan, Preparation and application of solvent-free liquid proteins with enhanced thermal and anhydrous stabilities, New J. Chem, 2021, 45, 6577.

[5] A. P. S. Brogan and J. P. Hallett, Solubilizing and Stabilizing Proteins in Anhydrous Ionic Liquids through Formation of Protein–Polymer Surfactant Nanoconstructs, J Am Chem Soc, 2016, 138, 4494–4501.

[6] A. Kumar et al, Lipase catalysis in organic solvents: advantages and applications, Biol Proced Online, 2016, 18, 2.

[7] D. Lan et al, Structure-Guided Rational Design of a Mono- and Diacylglycerol Lipase from Aspergillus oryzae: A Single Residue Mutant Increases the Hydrolysis Ability, J Agric Food Chem, 2021, 69, 5344–5352.

[8] L. L. Rade et al, Dimer-assisted mechanism of (un)saturated fatty acid decarboxylation for alkene production, Proceedings of the National Academy of Sciences, 2023, **120**, e2221483120.

[9] S. Matthews et al, Production of alkenes and novel secondary products by P450 OleTJE using novel H2O2-generating fusion protein systems, FEBS Lett, 2017, 591, 737-750.

[Image] Queensland Government. What are biofuels? How we make and use biofuels in Queensland. [internet]. 2023 [cited 7/3/2024]. Available from: https://www.statedevelopment.qld.gov.au/news/what-are-biofuels-how-we-make-and-use-biofuels-in-queensland